Thurston's Work on Surfaces

· ·
· Mathematical Notes 48 巻 · Princeton University Press
4.0
2 件のレビュー
電子書籍
272
ページ
利用可能
評価とレビューは確認済みではありません 詳細

この電子書籍について

This book provides a detailed exposition of William Thurston's work on surface homeomorphisms, available here for the first time in English. Based on material of Thurston presented at a seminar in Orsay from 1976 to 1977, it covers topics such as the space of measured foliations on a surface, the Thurston compactification of Teichmüller space, the Nielsen-Thurston classification of surface homeomorphisms, and dynamical properties of pseudo-Anosov diffeomorphisms. Thurston never published the complete proofs, so this text is the only resource for many aspects of the theory.

Thurston was awarded the prestigious Fields Medal in 1982 as well as many other prizes and honors, and is widely regarded to be one of the major mathematical figures of our time. Today, his important and influential work on surface homeomorphisms is enjoying continued interest in areas ranging from the Poincaré conjecture to topological dynamics and low-dimensional topology.

Conveying the extraordinary richness of Thurston's mathematical insight, this elegant and faithful translation from the original French will be an invaluable resource for the next generation of researchers and students.

評価とレビュー

4.0
2 件のレビュー

著者について

Albert Fathi is professor at the École Normale Supérieure de Lyon. François Laudenbach is professor emeritus at the University of Nantes. Valentin Poénaru is professor emeritus at the Université Paris-Sud, Orsay. Djun Kim is a Skylight research associate in mathematics at the University of British Columbia. Dan Margalit is assistant professor of mathematics at Georgia Institute of Technology. He is the coauthor of A Primer on Mapping Class Groups (Princeton).

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。