Topics in m-adic Topologies

·
· Springer Science & Business Media
E-boek
76
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

The m-adic topologies and, in particular the notions of m-complete ring and m-completion A of a commutative ring A, occur frequently in commutative algebra and are also a useful tool in algebraic geometry. The aim of this work is to collect together some criteria concerning the ascent (from A to A) and the descent (from A to A) of several properties of commutative rings such as, for example: integrity, regularity, factoriality, normality, etc. More precisely, we want to show that many of the above criteria, although not trivial at all, are elementary consequences of some fundamental notions of commutative algebra and local algebra. Sometimes we are able to get only partial results, which probably can be improved by further deeper investigations. No new result has been included in this work. Its only origi nality is the choice of material and the mode of presentation. The comprehension of the most important statements included in this book needs only a very elementary background in algebra, ideal theory and general topology. In order to emphasize the elementary character of our treatment, we have recalled several well known definitions and, sometimes, even the proofs of the first properties which follow directly from them. On the other hand, we did not insert in this work some important results, such as the Cohen structure theorem on complete noetherian local rings, as we did not want to get away too much from the spirit of the book.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.