Topological Algebras with Involution

· North-Holland Mathematics Studies Книга 200 · Elsevier
Електронна книга
512
Сторінки
Можна додати
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

This book familiarizes both popular and fundamental notions and techniques from the theory of non-normed topological algebras with involution, demonstrating with examples and basic results the necessity of this perspective. The main body of the book is focussed on the Hilbert-space (bounded) representation theory of topological *-algebras and their topological tensor products, since in our physical world, apart from the majority of the existing unbounded operators, we often meet operators that are forced to be bounded, like in the case of symmetric *-algebras. So, one gets an account of how things behave, when the mathematical structures are far from being algebras endowed with a complete or non-complete algebra norm. In problems related with mathematical physics, such instances are, indeed, quite common.Key features:- Lucid presentation- Smooth in reading- Informative- Illustrated by examples- Familiarizes the reader with the non-normed *-world- Encourages the hesitant- Welcomes new comers.- Well written and lucid presentation.- Informative and illustrated by examples.- Familiarizes the reader with the non-normed *-world.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.