Topological Methods in Group Theory

· · ·
· London Mathematical Society Lecture Note Series Buch 451 · Cambridge University Press
E-Book
212
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

This volume collects the proceedings of the conference 'Topological methods in group theory', held at Ohio State University in 2014 in honor of Ross Geoghegan's 70th birthday. It consists of eleven peer-reviewed papers on some of the most recent developments at the interface of topology and geometric group theory. The authors have given particular attention to clear exposition, making this volume especially useful for graduate students and for mathematicians in other areas interested in gaining a taste of this rich and active field. A wide cross-section of topics in geometric group theory and topology are represented, including left-orderable groups, groups defined by automata, connectivity properties and Σ-invariants of groups, amenability and non-amenability problems, and boundaries of certain groups. Also included are topics that are more geometric or topological in nature, such as the geometry of simplices, decomposition complexity of certain groups, and problems in shape theory.

Autoren-Profil

N. Broaddus is Associate Professor of Mathematics at Ohio State University.

M. Davis is Professor of Mathematics at Ohio State University. He is the author of The Geometry and Topology of Coxeter Groups (2007).

J.-F. Lafont is Professor of Mathematics at Ohio State University. He is an author of Rigidity of High Dimensional Graph Manifolds (2015). His research focuses on the geometry, topology, and dynamics of spaces of non-positive curvature.

I. J. Ortiz is Professor of Mathematics at Miami University. Her research focuses on K-theory of infinite groups with torsion.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.