Topological Methods in Group Theory

· · ·
· London Mathematical Society Lecture Note Series Livro 451 · Cambridge University Press
E-book
212
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This volume collects the proceedings of the conference 'Topological methods in group theory', held at Ohio State University in 2014 in honor of Ross Geoghegan's 70th birthday. It consists of eleven peer-reviewed papers on some of the most recent developments at the interface of topology and geometric group theory. The authors have given particular attention to clear exposition, making this volume especially useful for graduate students and for mathematicians in other areas interested in gaining a taste of this rich and active field. A wide cross-section of topics in geometric group theory and topology are represented, including left-orderable groups, groups defined by automata, connectivity properties and Σ-invariants of groups, amenability and non-amenability problems, and boundaries of certain groups. Also included are topics that are more geometric or topological in nature, such as the geometry of simplices, decomposition complexity of certain groups, and problems in shape theory.

Sobre o autor

N. Broaddus is Associate Professor of Mathematics at Ohio State University.

M. Davis is Professor of Mathematics at Ohio State University. He is the author of The Geometry and Topology of Coxeter Groups (2007).

J.-F. Lafont is Professor of Mathematics at Ohio State University. He is an author of Rigidity of High Dimensional Graph Manifolds (2015). His research focuses on the geometry, topology, and dynamics of spaces of non-positive curvature.

I. J. Ortiz is Professor of Mathematics at Miami University. Her research focuses on K-theory of infinite groups with torsion.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.