Topology, $C^*$-Algebras, and String Duality

· Regional conference series in mathematics 111-китеп · American Mathematical Soc.
Электрондук китеп
110
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.