Topology: Edition 2

· UNITEXT Livre 153 · Springer Nature
E-book
377
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; con- nectedness and compactness; Alexandrov compactification; quotient topol- ogies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced.

This second edition contains a new chapter with a topological introduction to sheaf cohomology and applications. It also corrects some inaccuracies and some additional exercises are proposed.

The textbook is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.


À propos de l'auteur

Marco Manetti (born 1966) is full professor in geometry at Sapienza University of Rome (Italy). His research activity concerns algebraic geometry, deformation theory and higher algebraic structures. He is author of the books "Topologia'' (Italian, 2008,2014), "Topology'' (2015) and "Lie methods in deformation theory'' (2022), all of them published with Springer.


Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.