Topology: Edition 2

· UNITEXT Cartea 153 · Springer Nature
Carte electronică
377
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; con- nectedness and compactness; Alexandrov compactification; quotient topol- ogies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced.

This second edition contains a new chapter with a topological introduction to sheaf cohomology and applications. It also corrects some inaccuracies and some additional exercises are proposed.

The textbook is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.


Despre autor

Marco Manetti (born 1966) is full professor in geometry at Sapienza University of Rome (Italy). His research activity concerns algebraic geometry, deformation theory and higher algebraic structures. He is author of the books "Topologia'' (Italian, 2008,2014), "Topology'' (2015) and "Lie methods in deformation theory'' (2022), all of them published with Springer.


Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.