Torsions of 3-dimensional Manifolds

· Progress in Mathematics 208. liburua · Birkhäuser
Liburu elektronikoa
196
orri
Balorazioak eta iritziak ez daude egiaztatuta  Lortu informazio gehiago

Liburu elektroniko honi buruz

Three-dimensional topology includes two vast domains: the study of geometric structures on 3-manifolds and the study of topological invariants of 3-manifolds, knots, etc. This book belongs to the second domain. We shall study an invariant called the maximal abelian torsion and denoted T. It is defined for a compact smooth (or piecewise-linear) manifold of any dimension and, more generally, for an arbitrary finite CW-complex X. The torsion T(X) is an element of a certain extension of the group ring Z[Hl(X)]. The torsion T can be naturally considered in the framework of simple homotopy theory. In particular, it is invariant under simple homotopy equivalences and can distinguish homotopy equivalent but non homeomorphic CW-spaces and manifolds, for instance, lens spaces. The torsion T can be used also to distinguish orientations and so-called Euler structures. Our interest in the torsion T is due to a particular role which it plays in three-dimensional topology. First of all, it is intimately related to a number of fundamental topological invariants of 3-manifolds. The torsion T(M) of a closed oriented 3-manifold M dominates (determines) the first elementary ideal of 7fl (M) and the Alexander polynomial of 7fl (M). The torsion T(M) is closely related to the cohomology rings of M with coefficients in Z and ZjrZ (r ;::: 2). It is also related to the linking form on Tors Hi (M), to the Massey products in the cohomology of M, and to the Thurston norm on H2(M).

Baloratu liburu elektroniko hau

Eman iezaguzu iritzia.

Irakurtzeko informazioa

Telefono adimendunak eta tabletak
Instalatu Android eta iPad/iPhone gailuetarako Google Play Liburuak aplikazioa. Zure kontuarekin automatikoki sinkronizatzen da, eta konexioarekin nahiz gabe irakurri ahal izango dituzu liburuak, edonon zaudela ere.
Ordenagailu eramangarriak eta mahaigainekoak
Google Play-n erositako audio-liburuak entzuteko aukera ematen du ordenagailuko web-arakatzailearen bidez.
Irakurgailu elektronikoak eta bestelako gailuak
Tinta elektronikoa duten gailuetan (adibidez, Kobo-ko irakurgailu elektronikoak) liburuak irakurtzeko, fitxategi bat deskargatu beharko duzu, eta hura gailura transferitu. Jarraitu laguntza-zentroko argibide xehatuei fitxategiak irakurgailu elektroniko bateragarrietara transferitzeko.