Trends in Optimization: American Mathematical Society Short Course, January 5-6, 2004, Phoeniz, Arizona

· · · ·
· Proceedings of Symposia in Applied Mathematics Cartea 61 · American Mathematical Soc.
Carte electronică
140
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This volume presents proceedings from the AMS short course, Trends in Optimization 2004, held at the Joint Mathematics Meetings in Phoenix (AZ). It focuses on seven exciting areas of discrete optimization. In particular, Karen Aardal describes Lovasz's fundamental algorithm for producing a short vector in a lattice by basis reduction and H.W. Lenstra's use of this idea in the early 1980s in his polynomial-time algorithm for integer programming in fixed dimension. Aardal's article, lucid presentations of the material. It also contains practical developments using computational tools. Bernd Sturmfels' article, Algebraic recipes for integer programming, discusses how methods of commutative algebra and algebraic combinatorics can be used successfully to attack integer programming problems. Specifically, Grobner bases play a central role in algorithmic theory and practice. Moreover, it is shown that techniques based on short rational functions are bringing new insights, such as in computing the integer programming gap. Overall, these articles, together with five other contributions, make this volume an impressive compilation on the state-of-the-art of optimization. It is suitable for graduate students and researchers interested in discrete optimization.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.

În continuarea seriei

Mai multe de la American Mathematical Society. Short Course

Cărți electronice similare