Variational and Free Boundary Problems

·
· The IMA Volumes in Mathematics and its Applications Кніга 53 · Springer Science & Business Media
1,0
1 водгук
Электронная кніга
204
Старонкі
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

This IMA Volume in Mathematics and its Applications VARIATIONAL AND FREE BOUNDARY PROBLEMS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries. " The aim of the workshop was to highlight new methods, directions and problems in variational and free boundary theory, with a concentration on novel applications of variational methods to applied problems. We thank R. Fosdick, M. E. Gurtin, W. -M. Ni and L. A. Peletier for organizing the year-long program and, especially, J. Sprock for co-organizing the meeting and co-editing these proceedings. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr. PREFACE In a free boundary one seeks to find a solution u to a partial differential equation in a domain, a part r of its boundary of which is unknown. Thus both u and r must be determined. In addition to the standard boundary conditions on the un known domain, an additional condition must be prescribed on the free boundary. A classical example is the Stefan problem of melting of ice; here the temperature sat isfies the heat equation in the water region, and yet this region itself (or rather the ice-water interface) is unknown and must be determined together with the tempera ture within the water. Some free boundary problems lend themselves to variational formulation.

Ацэнкі і агляды

1,0
1 водгук

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.