START FROM SCRATCH DIGITAL SIGNAL PROCESSING WITH TKINTER

·
· BALIGE PUBLISHING
4.5
6 reviews
Ebook
505
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In this project, you will create a multi-form GUI to implement digital signal processing. Creating a GUI involves designing an interface where users can input parameters and visualize the results of various signal processing techniques. Each form corresponds to a specific technique and is implemented using the tkinter library.


The "Simple Sinusoidal Form" allows users to generate and visualize a basic sinusoidal signal. It includes input fields for parameters like frequency, amplitude, and time period. The utilities associated with this form provide functions to generate and plot the simple sinusoidal signal.


The "Two Sinusoidals Form" extends the previous form, enabling users to generate and visualize two combined sinusoidal signals. It provides input fields for frequencies, amplitudes, and time periods of both signals. The utilities handle the generation and plotting of the combined sinusoidal signals.


The "More Two Sinusoidals Form" further extends the previous form to generate and visualize additional combined sinusoidal signals. It includes input fields for frequencies, amplitudes, and time periods of three sinusoidal signals. The utilities handle the generation and plotting of these combined signals.


Forms for various modulation techniques (AM, FM, PM, ASK, FSK, PSK) are available. These allow users to generate and visualize modulated signals by providing input fields for modulation indices, carrier frequencies, and time periods. The utilities in each form handle the signal generation and modulation process, as well as the plotting of the modulated signals.


Forms for different filter designs (FIR, Butterworth, Chebyshev Type 1) cover lowpass, highpass, bandpass, and bandstop filters. They include input fields for filter order, cutoff frequencies, and other relevant parameters. The utilities in each form implement the filter design and frequency response plotting.


Wavelet transformation forms focus on wavelet-based techniques, including scaling, decomposition, and denoising. They provide input fields for wavelet type, thresholding methods, and other wavelet-specific parameters. The utilities handle the wavelet transformations, denoising, and visualizing the results.


Forms for various denoising techniques (MA, EMA, Median, SGF, Wiener, TV, NLM, PCA) cover different smoothing and denoising methods. They offer input fields for relevant denoising parameters. The utilities for each form implement the denoising process and display the denoised signals.


Each form's utility methods interact with the GUI elements, taking user inputs and performing the corresponding signal processing tasks. These utilities encapsulate the underlying algorithms and ensure a seamless interaction between the user interface and the backend computations.


In summary, this session involves creating a comprehensive GUI for a wide range of signal processing techniques, including signal generation, modulation, filtering, wavelet transformations, and various denoising methods. Each form and its associated utilities handle specific tasks, ensuring an intuitive and effective user experience.


Ratings and reviews

4.5
6 reviews

About the author

Vivian Siahaan is a highly motivated individual with a passion for continuous learning and exploring new areas. Born and raised in Hinalang Bagasan, Balige, situated on the picturesque banks of Lake Toba, she completed her high school education at SMAN 1 Balige. Vivian's journey into the world of programming began with a deep dive into various languages such as Java, Android, JavaScript, CSS, C++, Python, R, Visual Basic, Visual C#, MATLAB, Mathematica, PHP, JSP, MySQL, SQL Server, Oracle, Access, and more. Starting from scratch, Vivian diligently studied programming, focusing on mastering the fundamental syntax and logic. She honed her skills by creating practical GUI applications, gradually building her expertise. One particular area of interest for Vivian is animation and game development, where she aspires to make significant contributions. Alongside her programming and mathematical pursuits, she also finds joy in indulging in novels, nurturing her love for literature. Vivian Siahaan's passion for programming and her extensive knowledge are reflected in the numerous ebooks she has authored. Her works, published by Sparta Publisher, cover a wide range of topics, including "Data Structure with Java," "Java Programming: Cookbook," "C++ Programming: Cookbook," "C Programming For High Schools/Vocational Schools and Students," "Java Programming for SMA/SMK," "Java Tutorial: GUI, Graphics and Animation," "Visual Basic Programming: From A to Z," "Java Programming for Animation and Games," "C# Programming for SMA/SMK and Students," "MATLAB For Students and Researchers," "Graphics in JavaScript: Quick Learning Series," "JavaScript Image Processing Methods: From A to Z," "Java GUI Case Study: AWT & Swing," "Basic CSS and JavaScript," "PHP/MySQL Programming: Cookbook," "Visual Basic: Cookbook," "C++ Programming for High Schools/Vocational Schools and Students," "Concepts and Practices of C++," "PHP/MySQL For Students," "C# Programming: From A to Z," "Visual Basic for SMA/SMK and Students," and "C# .NET and SQL Server for High School/Vocational School and Students." Furthermore, at the ANDI Yogyakarta publisher, Vivian Siahaan has contributed to several notable books, including "Python Programming Theory and Practice," "Python GUI Programming," "Python GUI and Database," "Build From Zero School Database Management System In Python/MySQL," "Database Management System in Python/MySQL," "Python/MySQL For Management Systems of Criminal Track Record Database," "Java/MySQL For Management Systems of Criminal Track Records Database," "Database and Cryptography Using Java/MySQL," and "Build From Zero School Database Management System With Java/MySQL." Vivian's diverse range of expertise in programming languages, combined with her passion for exploring new horizons, makes her a dynamic and versatile individual in the field of technology. Her dedication to learning, coupled with her strong analytical and problem-solving skills, positions her as a valuable asset in any programming endeavor. Vivian Siahaan's contributions to the world of programming and literature continue to inspire and empower aspiring programmers and readers alike.


Rismon Hasiholan Sianipar, born in Pematang Siantar in 1994, is a distinguished researcher and expert in the field of electrical engineering. After completing his education at SMAN 3 Pematang Siantar, Rismon ventured to the city of Jogjakarta to pursue his academic journey. He obtained his Bachelor of Engineering (S.T) and Master of Engineering (M.T) degrees in Electrical Engineering from Gadjah Mada University in 1998 and 2001, respectively, under the guidance of esteemed professors, Dr. Adhi Soesanto and Dr. Thomas Sri Widodo. During his studies, Rismon focused on researching non-stationary signals and their energy analysis using time-frequency maps. He explored the dynamic nature of signal energy distribution on time-frequency maps and developed innovative techniques using discrete wavelet transformations to design non-linear filters for data pattern analysis. His research showcased the application of these techniques in various fields. In recognition of his academic prowess, Rismon was awarded the prestigious Monbukagakusho scholarship by the Japanese Government in 2003. He went on to pursue his Master of Engineering (M.Eng) and Doctor of Engineering (Dr.Eng) degrees at Yamaguchi University, supervised by Prof. Dr. Hidetoshi Miike. Rismon's master's and doctoral theses revolved around combining the SR-FHN (Stochastic Resonance Fitzhugh-Nagumo) filter strength with the cryptosystem ECC (elliptic curve cryptography) 4096-bit. This innovative approach effectively suppressed noise in digital images and videos while ensuring their authenticity. Rismon's research findings have been published in renowned international scientific journals, and his patents have been officially registered in Japan. Notably, one of his patents, with registration number 2008-009549, gained recognition. He actively collaborates with several universities and research institutions in Japan, specializing in cryptography, cryptanalysis, and digital forensics, particularly in the areas of audio, image, and video analysis. With a passion for knowledge sharing, Rismon has authored numerous national and international scientific articles and authored several national books. He has also actively participated in workshops related to cryptography, cryptanalysis, digital watermarking, and digital forensics. During these workshops, Rismon has assisted Prof. Hidetoshi Miike in developing applications related to digital image and video processing, steganography, cryptography, watermarking, and more, which serve as valuable training materials. Rismon's field of interest encompasses multimedia security, signal processing, digital image and video analysis, cryptography, digital communication, digital forensics, and data compression. He continues to advance his research by developing applications using programming languages such as Python, MATLAB, C++, C, VB.NET, C#.NET, R, and Java. These applications serve both research and commercial purposes, further contributing to the advancement of signal and image analysis. Rismon Hasiholan Sianipar is a dedicated researcher and expert in the field of electrical engineering, particularly in the areas of signal processing, cryptography, and digital forensics. His academic achievements, patented inventions, and extensive publications demonstrate his commitment to advancing knowledge in these fields. Rismon's contributions to academia and his collaborations with prestigious institutions in Japan have solidified his position as a respected figure in the scientific community. Through his ongoing research and development of innovative applications, Rismon continues to make significant contributions to the field of electrical engineering.


Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.