Elliptic Theory and Noncommutative Geometry: Nonlocal Elliptic Operators

· ·
· Operator Theory: Advances and Applications Book 183 · Springer Science & Business Media
Ebook
224
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Noncommutative geometry, which can rightfully claim the role of a philosophy in mathematicalstudies,undertakesto replacegoodoldnotionsofclassicalgeometry (suchas manifolds,vectorbundles, metrics, di?erentiable structures,etc. ) by their abstract operator-algebraic analogs and then to study the latter by methods of the theory of operator algebras. At ?rst sight, this pursuit of maximum possible generality harbors the danger of completely forgetting the classical beginnings, so that not only the answers but also the questions would defy stating in traditional terms. Noncommutative geometry itself would become not only a method but also the main subject of investigation according to the capacious but not too practical formula: “Know thyself. ” Fortunately, this is not completely true (or even is completely untrue) in reality: there are numerous problems that are quite classical in their statement (or at least admit an equivalent classical statement) but can be solved only in the framework of noncommutative geometry. One of such problems is the subject of the present book. The classical elliptic theory developed in the well-known work of Atiyah and Singer on the index problem relates an analytic invariant of an elliptic pseud- i?erential operator on a smooth compact manifold, namely, its index, to topol- ical invariants of the manifold itself. The index problem for nonlocal (and hence nonpseudodi?erential) elliptic operators is much more complicated and requires the use of substantially more powerful methods than those used in the classical case.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.