Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory.
Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
Vladimir Kadets has authored two monographs and more than 100 articles in peer-reviewed journals, mainly in Banach space theory: sequences and series, bases, vector-valued measures and integration, measurable multi-functions and selectors, isomorphic and isometric structures of Banach spaces, operator theory. In 2005 he received the State Award of Ukraine in Science and Technology to honour his research. The present book reflects the author’s teaching experience in the field, spanning over more than 20 years.