Volume Conjecture for Knots

ยท
ยท SpringerBriefs in Mathematical Physics แƒฌแƒ˜แƒ’แƒœแƒ˜ 30 ยท Springer
แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜
120
แƒ’แƒ•แƒ”แƒ แƒ“แƒ˜
แƒ แƒ”แƒ˜แƒขแƒ˜แƒœแƒ’แƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒ‘แƒ˜ แƒ“แƒแƒฃแƒ“แƒแƒกแƒขแƒฃแƒ แƒ”แƒ‘แƒ”แƒšแƒ˜แƒ ย แƒจแƒ”แƒ˜แƒขแƒงแƒ•แƒ”แƒ— แƒ›แƒ”แƒขแƒ˜

แƒแƒ› แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘

The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaevโ€™s invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume.

In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the โ€œproofโ€, that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial โ€œlooks likeโ€ the hyperbolicity equations of the knot complement.

We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chernโ€“Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C).

We finish by mentioning further generalizations of the volume conjecture.

แƒจแƒ”แƒแƒคแƒแƒกแƒ”แƒ— แƒ”แƒก แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜

แƒ’แƒ•แƒ˜แƒ—แƒฎแƒแƒ แƒ˜แƒ— แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒแƒ–แƒ แƒ˜.

แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ แƒฌแƒแƒ™แƒ˜แƒ—แƒฎแƒ•แƒแƒกแƒ—แƒแƒœ แƒ“แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒ‘แƒ˜แƒ—

แƒกแƒ›แƒแƒ แƒขแƒคแƒแƒœแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒขแƒแƒ‘แƒšแƒ”แƒขแƒ”แƒ‘แƒ˜
แƒ“แƒแƒแƒ˜แƒœแƒกแƒขแƒแƒšแƒ˜แƒ แƒ”แƒ— Google Play Books แƒแƒžแƒ˜ Android แƒ“แƒ iPad/iPhone แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก. แƒ˜แƒก แƒแƒ•แƒขแƒแƒ›แƒแƒขแƒฃแƒ แƒแƒ“ แƒ’แƒแƒœแƒแƒฎแƒแƒ แƒชแƒ˜แƒ”แƒšแƒ”แƒ‘แƒก แƒกแƒ˜แƒœแƒฅแƒ แƒแƒœแƒ˜แƒ–แƒแƒชแƒ˜แƒแƒก แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒแƒœแƒ’แƒแƒ แƒ˜แƒจแƒ—แƒแƒœ แƒ“แƒ แƒกแƒแƒจแƒฃแƒแƒšแƒ”แƒ‘แƒแƒก แƒ›แƒแƒ’แƒชแƒ”แƒ›แƒ—, แƒฌแƒแƒ˜แƒ™แƒ˜แƒ—แƒฎแƒแƒ— แƒกแƒแƒกแƒฃแƒ แƒ•แƒ”แƒšแƒ˜ แƒ™แƒแƒœแƒขแƒ”แƒœแƒขแƒ˜ แƒœแƒ”แƒ‘แƒ˜แƒกแƒ›แƒ˜แƒ”แƒ  แƒแƒ“แƒ’แƒ˜แƒšแƒแƒก, แƒ แƒแƒ’แƒแƒ แƒช แƒแƒœแƒšแƒแƒ˜แƒœ, แƒ˜แƒกแƒ” แƒฎแƒแƒ–แƒ’แƒแƒ แƒ”แƒจแƒ” แƒ แƒ”แƒŸแƒ˜แƒ›แƒจแƒ˜.
แƒšแƒ”แƒžแƒขแƒแƒžแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ”แƒ‘แƒ˜
Google Play-แƒจแƒ˜ แƒจแƒ”แƒซแƒ”แƒœแƒ˜แƒšแƒ˜ แƒแƒฃแƒ“แƒ˜แƒแƒฌแƒ˜แƒ’แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒกแƒ›แƒ”แƒœแƒ แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ˜แƒก แƒ•แƒ”แƒ‘-แƒ‘แƒ แƒแƒฃแƒ–แƒ”แƒ แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒจแƒ”แƒ’แƒ˜แƒซแƒšแƒ˜แƒแƒ—.
แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒกแƒฎแƒ•แƒ แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜
แƒ”แƒšแƒ”แƒฅแƒขแƒ แƒแƒœแƒฃแƒšแƒ˜ แƒ›แƒ”แƒšแƒœแƒ˜แƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ–แƒ” แƒฌแƒแƒกแƒแƒ™แƒ˜แƒ—แƒฎแƒแƒ“, แƒ แƒแƒ’แƒแƒ แƒ˜แƒชแƒแƒ Kobo eReaders, แƒ—แƒฅแƒ•แƒ”แƒœ แƒฃแƒœแƒ“แƒ แƒฉแƒแƒ›แƒแƒขแƒ•แƒ˜แƒ แƒ—แƒแƒ— แƒคแƒแƒ˜แƒšแƒ˜ แƒ“แƒ แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒแƒ— แƒ˜แƒ’แƒ˜ แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒแƒจแƒ˜. แƒ“แƒแƒฎแƒ›แƒแƒ แƒ”แƒ‘แƒ˜แƒก แƒชแƒ”แƒœแƒขแƒ แƒ˜แƒก แƒ“แƒ”แƒขแƒแƒšแƒฃแƒ แƒ˜ แƒ˜แƒœแƒกแƒขแƒ แƒฃแƒฅแƒชแƒ˜แƒ”แƒ‘แƒ˜แƒก แƒ›แƒ˜แƒฎแƒ”แƒ“แƒ•แƒ˜แƒ— แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒ”แƒ— แƒคแƒแƒ˜แƒšแƒ”แƒ‘แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒญแƒ”แƒ แƒ˜แƒš แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ–แƒ”.