Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate.