What Is Mathematical Logic?

· · ·
· Courier Corporation
3,0
2 arvostelua
E-kirja
96
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.
The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams began to converge in the seventeenth century with the invention of the calculus, which ultimately brought mathematics and logic together. The authors then briefly indicate how such relatively modern concepts as set theory, Gödel's incompleteness theorems, the continuum hypothesis, the Löwenheim-Skolem theorem, and other ideas influenced mathematical logic.
The ideas are set forth simply and clearly in a pleasant style, and despite the book's relative brevity, there is much covered on these pages. Nonmathematicians can read the book as a general survey; students of the subject will find it a stimulating introduction. Readers will also find suggestions for further reading in this lively and exciting area of modern mathematics.

Arviot ja arvostelut

3,0
2 arvostelua

Tietoja kirjoittajasta

This volume's six chapters are edited versions of a series of lectures delivered at Australia's Monash University by five individuals: J. N. Crossley, C. J. Ash, C. J. Brickhill, J. C. Stillwell, and N. H. Williams.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.