Generalized Analytic Continuation

· Memoirs of the American Mathematical Society Book 25 · American Mathematical Soc.
Ebook
149
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. The authors use the strong analogy with the summability of divergent series to motivate the subject. In this vein, for instance, theorems can be described as being ``Abelian'' or ``Tauberian''. The introductoryoverview carefully explains the history and context of the theory. The book addresses the following questions: (1) When can we say, in some reasonable way, that component functions of a meromorphic function on a disconnected domain, are ``continuations'' of each other? (2) What role do such``continuations'' play in certain aspects of approximation theory and operator theory? The authors begin with a review of the works of Poincare, Borel, Wolff, Walsh, and Goncar, on continuation properties of ``Borel series'' and other meromorphic functions that are limits of rapidly convergent sequences of rational functions. They then move on to the work of Tumarkin, who looked at the continuation properties of functions in the classical Hardy space of the disk in terms of the concept of``pseudocontinuation''. Tumarkin's work was seen in a different light by Douglas, Shapiro, and Shields in their discovery of a characterization of the cyclic vectors for the backward shift operator on the Hardy space. The authors cover this important concept of ``pseudocontinuation'' quite thoroughlysince it appears in many areas of analysis. They also add a new and previously unpublished method of ``continuation'' to the list, based on formal multiplication of trigonometric series, which can be used to examine the backward shift operator on many spaces of analytic functions. The book attempts to un

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.