Elliptic Boundary Value Problems in the Spaces of Distributions

· Mathematics and Its Applications Book 384 · Springer Science & Business Media
Ebook
420
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This volume endeavours to summarise all available data on the theorems on isomorphisms and their ever increasing number of possible applications. It deals with the theory of solvability in generalised functions of general boundary-value problems for elliptic equations. In the early sixties, Lions and Magenes, and Berezansky, Krein and Roitberg established the theorems on complete collection of isomorphisms. Further progress of the theory was connected with proving the theorem on complete collection of isomorphisms for new classes of problems, and hence with the development of new methods to prove these theorems. The theorems on isomorphisms were first established for elliptic equations with normal boundary conditions. However, after the Noetherian property of elliptic problems was proved without assuming the normality of the boundary expressions, this became the natural way to consider the problems of establishing the theorems on isomorphisms for general elliptic problems. The present author's method of solving this problem enabled proof of the theorem on complete collection of isomorphisms for the operators generated by elliptic boundary-value problems for general systems of equations. Audience: This monograph will be of interest to mathematicians whose work involves partial differential equations, functional analysis, operator theory and the mathematics of mechanics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.