Eclipsing Variables - What They can Tell Us and What We can do with Them The aim of the present book will be to provide an introduction to the inter pretation of the observed light changes of eclipsing binary stars and their analysis for the elements of the respective systems. Whenever we study the properties of any celestial body - be it a planet or a star - all information we wish to gain can reach us through two different channels: their gravitational attraction, and their light. Gravitational interaction between our Earth and its celestial neighbours is, however, measurable only at distances of the order of the dimensions of our solar system; and the only means of communication with the realm of the stars are their nimble-footed photons reaching us - with appropriate time-lag - across the intervening gaps of space. As long as a star is single and emits constant light, it does not constitute a very revealing source of information. A spectrometry of its light can disclose, to be sure, the temperature (colour, or ionization) of the star's semi-transparent outer layers, their chemical composition, and prevalent pressure (through Stark effect) or magnetic field (Zeeman effect), it can disclose even some information about its absolute luminosity or rate of spin. It cannot, however, tell us anything about what we should like to know most - namely, the mass or size (i.e., density) of the respective configuration; its absolute dimensions, or its internal structure.