The rapid growth of computational power and development of simulation tools in recent years have made it possible to evaluate the material and structural response of hybrid structures without having to entirely rely on complex and expensive testing procedures.However, as the failure process of composite materials is not entirely understood, further research efforts are needed in order to develop reliable material models for the existing simulation tools.
The work presented in this dissertation involves modelling and testing of bolted joints in hybrid composite-aluminium structures.The main focus is directed towards understanding the failure behaviour of the composite material under static and fatigue loading, and how to include this behaviour in large scale models of a typical bolted airframe structure in an efficient way. In addition to that, the influence of thermally induced loads on the strength and fatigue life is evaluated in order to establish a design strategy that can be used in the industrial context.
The dissertation is divided into two parts. In the first one, the background and the theory are presented while the second one consists of five scientific papers