A wide spectrum of topics is treated, with emphasis on the interplay between representation theory and the geometry of adjoint orbits for Lie algebras over fields of possibly finite characteristic, as well as for infinite-dimensional Lie algebras. Also covered is unitary representation theory and branching laws for reductive subgroups, an active part of modern representation theory. Finally, there is a thorough discussion of compactifications of symmetric spaces, and harmonic analysis through a far-reaching generalization of Harish--Chandra's Plancherel formula for semisimple Lie groups.
Ideal for graduate students and researchers, "Lie Theory" provides a broad, clearly focused examination of semisimple Lie groups and their integral importance to research in many branches of mathematics.
"Lie Theory: Lie Algebras and Representations" contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." Both papers are comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations.