Employing Sage—a free open-source mathematics software system—to illustrate their ideas, the authors begin by providing background on linear block codes and introducing some of the special families of codes explored in later chapters, such as quadratic residue and algebraic-geometric codes. Also surveyed is the theory that intersects self-dual codes, lattices, and invariant theory, which leads to an intriguing analogy between the Duursma zeta function and the zeta function attached to an algebraic curve over a finite field. The authors then examine a connection with the theory of block designs and the Assmus–Mattson theorem. Further chapters scrutinize the knotty problem of finding a non-trivial estimate for the number of solutions over a finite field to a hyperelliptic polynomial equation of "small" degree, as well as the best asymptotic bounds for a binary linear block code. Some of the more mysterious aspects relating modular forms and algebraic-geometric codes are also discussed.
Selected Unsolved Problems in Coding Theory is intended for graduate students and researchers in algebraic coding theory, especially those who are interested in finding some current unsolved problems. Familiarity with concepts in algebra, number theory, and modular forms is assumed. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study.