Nonlinear Evolution Equation covers the proceedings of the Symposium by the same title, conducted by the Mathematics Research Center at the University of Wisconsin, Madison on October 17-19, 1977. This book is divided into 13 chapters and begins with reviews of the uniqueness of solution to systems of conservation laws and the computational aspects of Glimm's method. The next chapters examine the theoretical and practical aspects of Boltzmann, Navier-Stokes, and evolution equations. These topics are followed by discussions of the practical applications of Trotter's product formula for some nonlinear semigroups and the finite time blow-up in nonlinear problems. The closing chapters deal with a Hamiltonian approach to the K-dV and other equations, along with a variational method for finding periodic solutions of differential equations. This book will prove useful to mathematicians and engineers.