Abstract Harmonic Analysis: Volume I: Structure of Topological Groups Integration Theory Group Representations, Edition 2

· Grundlehren der mathematischen Wissenschaften Book 115 · Springer Science & Business Media
Ebook
525
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

When we acce pted th ekindinvitationof Prof. Dr. F.K. Scnxmrrto write a monographon abstract harmonic analysis for the Grundlehren. der Maihemaiischen Wissenscha/ten series, weintendedto writeall that wecouldfindoutaboutthesubjectin a textof about 600printedpages. We intended thatour book should be accessi ble tobeginners, and we hoped to makeit usefulto specialists as well. These aims proved to be mutually inconsistent. Hencethe presentvolume comprises onl y half of theprojectedwork. Itgives all ofthe structure oftopological groups neededfor harmonic analysisas it is known to u s; it treats integration on locallycompact groups in detail;it contains an introductionto the theory of group representati ons. In the second volume we will treat harmonicanalysisoncompactgroupsand locallycompactAbeliangroups, in considerable et d ail. Thebook is basedon courses given by E. HEWITT at the University of Washington and the University of Uppsala, althoughnaturallythe material of these courses has been en ormously expanded to meet the needsof a formal monograph. Like the. other treatments of harmonic analysisthathaveappeared since 1940,the book is a linealdescendant of A. WEIL'S fundamentaltreatise (WElL [4J)1. The debtof all workers in the field to WEIL'S work is wellknown and enormous. We havealso borrowed freely from LOOMIS'S treatmentof the subject (Lool\IIS[2 J), from NAIMARK [1J, and most especially from PONTRYA GIN [7]. In our exposition ofthestructur e of locally compact Abelian groups and of the PONTRYA GIN-VA N KAM PEN dualitytheorem, wehave beenstrongly influenced byPONTRYA GIN'S treatment. We hope to havejustified the writing of yet anothertreatiseon abstractharmonicanalysis by taking up recentwork, by writingoutthedetailsofeveryimportantconstruction andtheorem, andby including a largenumberof concrete ex amplesand factsnotavailablein other textbooks.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.