Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications

· North-Holland Mathematics Studies Book 199 · Elsevier
Ebook
422
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features:- First monograph is "Generalized Lattices"* The first introduction to the theory of bitopological spaces and its applications.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.