Topologische Lineare Räume I: Ausgabe 2

· Springer-Verlag
Ebook
456
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

am Ende des Buches erhebt keinen Anspruch auf Vollständigkeit, dürfte jedoch ausführlich genug sein, um ein selbständiges Weiterarbeiten zu ermöglichen. Der erste Anstoß zur Beschäftigung mit dem Gegenstand dieses Buches ging von meinem Lehrer 0. TOEPLITZ aus. Die von uns gemein sam entwickelte Theorie der vollkommenen Räume habe ich in § 30 dieses Buches darzustellen versucht. Dem wiederholten persönlichen Kontakt mit den französischen Kollegen J. DIEUDONNE, A. GROTHEN DIECK und L. ScHWARTZ nach dem Kriege verdanke ich die genaue Kenntnis der von ihnen entwickelten Theorie, die den Hauptgegenstand dieses Buches bildet. Die vorliegende Darstellung stützt sich vielfach auf die beiden Bände von BoURBAKI (BouRBAKI [6] des Literaturver zeichnisses) und die Vorlesung von GROTHENDIECK [11]. Zu besonderem Dank bin ich Herrn W. NEUMERund Herrn H. G. TILLMANN verpflichtet, die die erste Hälfte bzw. das ganze Manuskript sorgfältig und kritisch durchgesehen haben. Wichtige Anregungen und Bemerkungen stammen von den Herren M. LANDSBERG, H. ScHAEFER und J. WLOKA. Schließlich danke ich dem Verlag für die rasche und vorzügliche Drucklegung. Heidelberg, im August 1960. G. KöTHE Vorwort zur zweiten Auflage Die zweite Auflage enthält eine Reihe von Korrekturen, auf deren Notwendigkeit mich freundliche Leser aufmerksam machten, und Hin weise auf neuere Literatur, in der einige der in der ersten Auflage noch offenen Probleme inzwischen ihre Lösung fanden. Davon abgesehen blieb der Text unverändert. Frankfurt, im Oktober 1965 G. KöTHE Inhaltsverzeichnis Erstes Kapitel: Grundbegriffe der allgemeinen Topologie Seite § 1. Der topalogische Raum . . . . . . . .

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.