Hypersonic Curved Compression Inlet and Its Inverse Design

· Springer Nature
Ebook
332
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book presents systematic research results on curved shock wave-curved compression surface applied to the compression surface design of supersonic–hypersonic inlet, which is a brand new inlet design. The concept of supersonic inlet curved compression discussed originated from the author’s research at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR SM-ES) in the early 1990s. This book introduces the research history, working characteristics, performance calculation and aerodynamic configuration design method of this compression mode in detail. It also describes method of estimating the minimum drag in inlet and drag reduction effect of curved compression and proposes a new index for evaluating unit area compression efficiency of the inlet. Further, it reviews the relevant recent research on curved compression. As such it is a valuable resource for students, researchers and scientists in the fields of hypersonic propulsion and aeronautics.

About the author

Prof. Kunyuan Zhang is a Professor at the College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, China. He received his B.S. and M.S. degrees in Power Engineering from Nanjing Aeronautical Institute (now Nanjing University of Aeronautics and Astronautics) in 1965 and 1981, respectively, and he has been teaching at the same university since 1986. His research fields include hypersonic propulsion technology and internal flow dynamics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.