The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of gauge theory and formulating examples of Chern–Simons–Higgs theories (in both abelian and non-abelian settings). Thereafter, the electroweak theory and self-gravitating electroweak strings are examined. The final chapters treat elliptic problems involving Chern–Simmons models, concentration-compactness principles, and Maxwell–Chern–Simons vortices.
Many open questions still remain in the field and are examined in this work in connection with Liouville-type equations and systems. The goal of this text is to form an understanding of selfdual solutions arising in a variety of physical contexts and thus is ideal for graduate students and researchers interested in partial differential equations and mathematical physics.