Attractor Dimension Estimates for Dynamical Systems: Theory and Computation: Dedicated to Gennady Leonov

·
· Emergence, Complexity and Computation Book 38 · Springer Nature
Ebook
545
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.