The book places focus early on continuous measurements, as well as discrete random variables. By invoking simple and intuitive models and geometric probability, discrete and continuous experiments and probabilities are discussed throughout the book in a natural way. Classical probability, random variables, and inference are discussed, as well as material on understanding data and topics of special interest.
Topics discussed include:
• Classical equally likely outcomes
• Variety of models of discrete and continuous probability laws
• Likelihood function and ratio
• Inference
• Bayesian statistics
With the growth in the volume of data generated in many disciplines that is enabling the growth in data science, companies now demand statistically literate scientists and this textbook is the answer, suited for undergraduates studying science or engineering, be it computer science, economics, life sciences, environmental, business, amongst many others. Basic knowledge of bivariate calculus, R language, Matematica and JMP is useful, however there is an accompanying website including sample R and Mathematica code to help instructors and students.
DAVID W. SCOTT is the Noah Harding Professor of Statistics at Rice University in Houston, Texas. He is a Fellow of the ASA, IMS, AAAS, an elected member of the ISI and received the 2004 Army Wilks Award and the 2008 ASA Founder's Award. He was formerly the Editor of the Journal of Computational and Graphical Statistics and currently serves as Co-Editor of Wiley Interdisciplinary Reviews: Computational Statistics. He is also the author of Multivariate Density Estimation: Theory, Practice, and Visualization.