Geometric Nonlinear Functional Analysis: Part 1

·
· American Mathematical Society: Colloquium publications Book 48 · American Mathematical Soc.
Ebook
488
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book presents a systematic and unified study of geometric nonlinear functional analysis. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to geometric measure theory, probability, classical analysis, combinatorics, and Banach space theory. The main theme of the book is the study of uniformly continuous and Lipschitz functions between Banach spaces (e.g., differentiability, stability, approximation, existence of extensions, fixed points, etc.). This study leads naturally also to the classification of Banach spaces and of their important subsets (mainly spheres) in the uniform and Lipschitz categories. Many recent rather deep theorems and delicate examples are included with complete and detailed proofs. Challenging open problems are described and explained, and promising new research directions are indicated.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.