A Study of Braids

·
· Mathematics and Its Applications 484 knyga · Springer Science & Business Media
El. knyga
277
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.