Abstract Convexity and Global Optimization

· Nonconvex Optimization and Its Applications Boek 44 · Springer Science & Business Media
E-boek
493
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func tion. Since f(y) ~ h(y) for ally, the second role is global. In contrast to a local approximation, the function h will be called a global affine support.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.