Bayesianisches Netzwerk: Modellierung von Unsicherheit in Robotersystemen

· Robotikwissenschaft [German] Bog 10 · One Billion Knowledgeable
E-bog
491
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

1: Bayessches Netz: Vertiefen Sie sich in die grundlegenden Konzepte von Bayesschen Netzen und deren Anwendungen.

2: Statistisches Modell: Erkunden Sie den Rahmen statistischer Modelle, der für die Dateninterpretation entscheidend ist.


3: Wahrscheinlichkeitsfunktion: Verstehen Sie die Bedeutung von Wahrscheinlichkeitsfunktionen im probabilistischen Denken.


4: Bayessche Inferenz: Erfahren Sie, wie die Bayessche Inferenz Entscheidungsprozesse mit Daten verbessert.


5: Mustererkennung: Untersuchen Sie Methoden zum Erkennen von Mustern in komplexen Datensätzen.


6: Ausreichende Statistik: Entdecken Sie, wie ausreichende Statistik die Datenanalyse vereinfacht und gleichzeitig Informationen erhält.


7: Gaußscher Prozess: Untersuchen Sie Gaußsche Prozesse und ihre Rolle bei der Modellierung von Unsicherheit.


8: Posterior-Wahrscheinlichkeit: Gewinnen Sie Einblicke in die Berechnung von Posterior-Wahrscheinlichkeiten für fundierte Vorhersagen.


9: Grafisches Modell: Verstehen Sie die Struktur und den Nutzen grafischer Modelle bei der Darstellung von Beziehungen.


10: Prior-Wahrscheinlichkeit: Untersuchen Sie die Bedeutung von Prior-Wahrscheinlichkeiten im Bayesschen Denken.


11: Gibbs-Sampling: Lernen Sie Gibbs-Sampling-Techniken für effizientes statistisches Sampling.


12: Maximum-a-posteriori-Schätzung: Entdecken Sie die MAP-Schätzung als Methode zur Optimierung bayesscher Modelle.


13: Bedingtes Zufallsfeld: Erkunden Sie die Verwendung bedingter Zufallsfelder bei strukturierter Vorhersage.


14: Dirichlet-multinomiale Verteilung: Verstehen Sie die Dirichlet-multinomiale Verteilung bei der Analyse kategorialer Daten.


15: Grafische Modelle für Proteinstrukturen: Untersuchen Sie Anwendungen grafischer Modelle in der Bioinformatik.


16: Modelle von Zufallsgraphen der Exponentialfamilie: Tauchen Sie ein in Zufallsgraphen der Exponentialfamilie für die Netzwerkanalyse.


17: Bernstein-von-Mises-Theorem: Lernen Sie die Implikationen des Bernstein-von-Mises-Theorems in der Statistik.


18: Bayessche hierarchische Modellierung: Erkunden Sie hierarchische Modelle zur Analyse komplexer Datenstrukturen.


19: Graphoid: Verstehen Sie das Konzept von Graphoiden und ihre Bedeutung in Abhängigkeitsbeziehungen.


20: Abhängigkeitsnetzwerk (grafisches Modell): Untersuchen Sie Abhängigkeitsnetzwerke in grafischen Modellrahmen.


21: Probabilistische Numerik: Untersuchen Sie probabilistische Numerik für verbesserte Rechenmethoden.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.

Fortsæt serien

Mere af Fouad Sabry

Lignende e-bøger