Bayesianisches Netzwerk: Modellierung von Unsicherheit in Robotersystemen

· Robotikwissenschaft [German] សៀវភៅទី 10 · One Billion Knowledgeable
សៀវភៅ​អេឡិចត្រូនិច
491
ទំព័រ
មានសិទ្ធិ
ការវាយតម្លៃ និងមតិវាយតម្លៃមិនត្រូវបានផ្ទៀងផ្ទាត់ទេ ស្វែងយល់បន្ថែម

អំពីសៀវភៅ​អេឡិចត្រូនិកនេះ

1: Bayessches Netz: Vertiefen Sie sich in die grundlegenden Konzepte von Bayesschen Netzen und deren Anwendungen.

2: Statistisches Modell: Erkunden Sie den Rahmen statistischer Modelle, der für die Dateninterpretation entscheidend ist.


3: Wahrscheinlichkeitsfunktion: Verstehen Sie die Bedeutung von Wahrscheinlichkeitsfunktionen im probabilistischen Denken.


4: Bayessche Inferenz: Erfahren Sie, wie die Bayessche Inferenz Entscheidungsprozesse mit Daten verbessert.


5: Mustererkennung: Untersuchen Sie Methoden zum Erkennen von Mustern in komplexen Datensätzen.


6: Ausreichende Statistik: Entdecken Sie, wie ausreichende Statistik die Datenanalyse vereinfacht und gleichzeitig Informationen erhält.


7: Gaußscher Prozess: Untersuchen Sie Gaußsche Prozesse und ihre Rolle bei der Modellierung von Unsicherheit.


8: Posterior-Wahrscheinlichkeit: Gewinnen Sie Einblicke in die Berechnung von Posterior-Wahrscheinlichkeiten für fundierte Vorhersagen.


9: Grafisches Modell: Verstehen Sie die Struktur und den Nutzen grafischer Modelle bei der Darstellung von Beziehungen.


10: Prior-Wahrscheinlichkeit: Untersuchen Sie die Bedeutung von Prior-Wahrscheinlichkeiten im Bayesschen Denken.


11: Gibbs-Sampling: Lernen Sie Gibbs-Sampling-Techniken für effizientes statistisches Sampling.


12: Maximum-a-posteriori-Schätzung: Entdecken Sie die MAP-Schätzung als Methode zur Optimierung bayesscher Modelle.


13: Bedingtes Zufallsfeld: Erkunden Sie die Verwendung bedingter Zufallsfelder bei strukturierter Vorhersage.


14: Dirichlet-multinomiale Verteilung: Verstehen Sie die Dirichlet-multinomiale Verteilung bei der Analyse kategorialer Daten.


15: Grafische Modelle für Proteinstrukturen: Untersuchen Sie Anwendungen grafischer Modelle in der Bioinformatik.


16: Modelle von Zufallsgraphen der Exponentialfamilie: Tauchen Sie ein in Zufallsgraphen der Exponentialfamilie für die Netzwerkanalyse.


17: Bernstein-von-Mises-Theorem: Lernen Sie die Implikationen des Bernstein-von-Mises-Theorems in der Statistik.


18: Bayessche hierarchische Modellierung: Erkunden Sie hierarchische Modelle zur Analyse komplexer Datenstrukturen.


19: Graphoid: Verstehen Sie das Konzept von Graphoiden und ihre Bedeutung in Abhängigkeitsbeziehungen.


20: Abhängigkeitsnetzwerk (grafisches Modell): Untersuchen Sie Abhängigkeitsnetzwerke in grafischen Modellrahmen.


21: Probabilistische Numerik: Untersuchen Sie probabilistische Numerik für verbesserte Rechenmethoden.

វាយតម្លៃសៀវភៅ​អេឡិចត្រូនិកនេះ

ប្រាប់យើងអំពីការយល់ឃើញរបស់អ្នក។

អាន​ព័ត៌មាន

ទូរសព្ទឆ្លាតវៃ និង​ថេប្លេត
ដំឡើងកម្មវិធី Google Play Books សម្រាប់ Android និង iPad/iPhone ។ វា​ធ្វើសមកាលកម្ម​ដោយស្វ័យប្រវត្តិជាមួយ​គណនី​របស់អ្នក​ និង​អនុញ្ញាតឱ្យ​អ្នកអានពេល​មានអ៊ីនធឺណិត ឬគ្មាន​អ៊ីនធឺណិត​នៅគ្រប់ទីកន្លែង។
កុំព្យូទ័រ​យួរដៃ និងកុំព្យូទ័រ
អ្នកអាចស្ដាប់សៀវភៅជាសំឡេងដែលបានទិញនៅក្នុង Google Play ដោយប្រើកម្មវិធីរុករកតាមអ៊ីនធឺណិតក្នុងកុំព្យូទ័ររបស់អ្នក។
eReaders និង​ឧបករណ៍​ផ្សេង​ទៀត
ដើម្បីអាននៅលើ​ឧបករណ៍ e-ink ដូចជា​ឧបករណ៍អាន​សៀវភៅអេឡិចត្រូនិក Kobo អ្នកនឹងត្រូវ​ទាញយក​ឯកសារ ហើយ​ផ្ទេរវាទៅ​ឧបករណ៍​របស់អ្នក។ សូមអនុវត្តតាម​ការណែនាំលម្អិតរបស់មជ្ឈមណ្ឌលជំនួយ ដើម្បីផ្ទេរឯកសារ​ទៅឧបករណ៍អានសៀវភៅ​អេឡិចត្រូនិកដែលស្គាល់។

បន្តស៊េរី

ច្រើនទៀតដោយ Fouad Sabry

សៀវភៅ​អេឡិចត្រូនិក​ស្រដៀងគ្នា