Contextual Image Classification: Understanding Visual Data for Effective Classification

· Computer Vision 83권 · One Billion Knowledgeable
eBook
144
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

What is Contextual Image Classification

A method of classification that is based on the contextual information contained in images is referred to as contextual image classification. This method falls under the category of pattern recognition in computer vision. A "contextual" approach is one that focuses on the relationship between the pixels that are in close proximity to one another, which is also referred to as the neighborhood. The classification of the photographs by the utilization of the contextual information is the objective of this approach.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Contextual image classification


Chapter 2: Pattern recognition


Chapter 3: Gaussian process


Chapter 4: LPBoost


Chapter 5: One-shot learning (computer vision)


Chapter 6: Least-squares support vector machine


Chapter 7: Fraunhofer diffraction equation


Chapter 8: Symmetry in quantum mechanics


Chapter 9: Bayesian hierarchical modeling


Chapter 10: Paden-Kahan subproblems


(II) Answering the public top questions about contextual image classification.


(III) Real world examples for the usage of contextual image classification in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Contextual Image Classification.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.

시리즈 계속

Fouad Sabry 작가의 책 더보기

비슷한 eBook