Differential Geometry: Frenet Equations and Differentiable Maps

·
· Walter de Gruyter GmbH & Co KG
eBook
290
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This textbook offers a different approach to classical textbooks in Differential Geometry. It includes practical examples and over 300 advanced problems designed for graduate students in various fields, such as fluid mechanics, gravitational fields, nuclear physics, electromagnetism, solid-state physics, and thermodynamics. Additionally, it contains problems tailored for students specializing in chemical, civil, and electrical engineering and electronics. The book provides fully detailed solutions to each problem and includes many illustrations to help visualize theoretical concepts.

The book introduces Frenet equations for plane and space curves, presents the basic theory of surfaces, and introduces differentiable maps and differentials on the surface. It also provides the first and second fundamental forms of surfaces, minimal surfaces, and geodesics. Furthermore, it contains a detailed analysis of covariant derivatives and manifolds.

The book covers many classical results, such as the Lancret Theorem, Shell Theorem, Joachimsthal Theorem, and Meusnier Theorem, as well as the fundamental theorems of plane curves, space curves, surfaces, and manifolds.

저자 정보

Muhittin Evren Aydin a mathematician who works on various aspects of mathematics. Currently he focuses on differential geometry, Riemannian geometry, fractional calculus, microeconomics, and applications of differential geometry.

Svetlin G. Georgiev is a mathematician who works on various aspects of mathematics. Currently he focuses on ordinary and partial differential equations, differential geometry, dynamic geometry on time scales, integral equations on time scales, theory of distributions and harmonic analysis.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.