Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction

· Progress in Nonlinear Differential Equations and Their Applications Kirja 9 · Birkhäuser
E-kirja
182
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

The book is devoted to evolution problems which arise in the dynamics of mechanical systems involving unilateral constraints, possibly in the presence of dry friction. Collisions may be the result. In such a context, the velocity function cannot be expected to be absolutely continuous, so the traditional theory of differential equations or inclusions does not apply. Some effective numerical techniques have been proposed, but existence results were missing until now. This book starts filling that gap. At first, some typical mathematical tools are introduced, such as compactness results in the space of vector functions of bounded variation in time and approximation in the sense of graphs. The sweeping process by a moving convex set in a Hilbert space plays a central role. The latest existence results concerning this process are presented in chapter 2. In chapters 3 and 4, the study of the mechanical problems is undertaken. Connected areas of research are briefly reviewed in chapter 5. Proofs are constructive whenever possible and convergence of algorithms is often considered. The book presupposes only a moderate background in functional analysis.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.