For the CVD process, the effect of halogen addition to the gas mixture is studied by modelling the adsorption and diffusion of SiH2, SiCl2 and SiBr2 on the (0001?) 4H-SiC surface. SiH2 was found to bind strongest to the surface and SiBr2 binds slightly stronger than the SiCl2 molecule. The diffusion barrier is shown to be lower for SiH2 than for SiBr2 and SiCl2 which have similar barriers. SiBr2 and SiCl2 are found to have similar physisorption energies and bind stronger than the SiH2 molecule. Gibbs free-energy calculations also indicate that the SiC surface is not fully hydrogen terminated at CVD conditions since missing-neighboring pair of surface hydrogens is found to be common. Calculations for the (0001) surface show that SiCl, SiCl2, SiHCl, SiH, and SiH2 likely adsorb on a methylene site, but the processes are thermodynamically less favorable than their reverse reactions. However, the adsorbed products may be stabilized by subsequent surface reactions to form a larger structure. The formation of these larger structures is found to be fast enough to compete with the desorption processes. Also the Gibbs free energies for adsorption of Si atoms, SiX, SiX2, and SiHX where X is F or Br are presented. Adsorption of Si atoms is shown to be the most thermodynamically favorable reaction followed by SiX, SiHX, and SiX2, X being a halide. The results in this study suggest that the major Si contributors in the SiC–CVD process are Si atoms, SiX and SiH.
Methanol can be synthesized from gaseous carbon dioxide and hydrogen using solid metal-metal oxide mixtures acting as heterogeneous catalysts. Since a large surface area of the catalyst enhances the speed of the heterogeneous reaction, the use of nanoparticles (NP) is expected to be advantageous due to the NPs’ large area to surface ratio. The plasma-induced creation of copper NPs is investigated. One important element during particle growth is the charging process where the variation of the work function (W) with particle size is a key quantity, and the variation becomes increasingly pronounced at smaller NP sizes. The work functions are computed for a set of NP charge numbers, sizes and shapes, using copper as a case study. A derived analytical expression for W is shown to give quite accurate estimates provided that the diameter of the NP is larger than about a nanometer and that the NP has relaxed to close to a spherical shape. For smaller sizes W deviates from the approximative expression, and also depends on the charge number. Some consequences of these results for NP charging process are outlined.
Key reaction steps in the methanol synthesis reaction mechanism using a Cu/ZrO2 nanoparticle catalyst is investigated. Two different reaction paths for conversion of CO2 to CO is studied. The two paths result in the same complete reaction 2 CO2 ? 2 CO + O2 where ZrO2 (s) acts as a catalyst. The highest activation energies are significantly lower compared to that of the gas phase reaction. The presence of oxygen vacancies at the surface appear to be decisive for the catalytic process to be effective. Studies of the reaction kinetics show that when oxygen vacancies are present on the ZrO2 surface, carbon monoxide is produced within a microsecond. The IR spectra of CO2 and H2 interacting with ZrO2 and Cu under conditions that correspond to the catalyzed CH3OH production process is also studied experimentally and compared to results from the theoretical computations. Surface structures and gas-phase molecules are identified through the spectral lines by matching them to specific vibrational modes from the literature and from the new computational results. Several surface structures are verified and can be used to pin point surface structures in the reaction path. This gives important information that help decipher how the reaction mechanism of the CO2 conversion and ultimately may aid to improve the methanol synthesis process.