Field Arithmetic: Edition 4

· Springer Nature
E-book
827
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements.

Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?

The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.

À propos de l'auteur

Michael D. Fried received his PhD in Mathematics from the University of Michigan in 1967. After postdoctoral research at the Institute for Advanced Study (1967–1969), he became professor at Stony Brook University (8 years), the University of California at Irvine (26 years), the University of Florida (3 years) and the Hebrew University (2 years). He has held visiting positions at MIT, MSRI, the University of Michigan, the University of Florida, the Hebrew University, and Tel Aviv University. He has been an editor of several mathematics journals including the Research Announcements of the Bulletin of the American Mathematical Society and the Journal of Finite Fields and its Applications. His research is primarily in the geometry and arithmetic of families of nonsingular projective curve covers applied to classical moduli spaces using theta functions and l-adic representations. These are especially applied to relating the Regular Inverse Galois Problem and extensions of Serre's Open Image Theorem. He was included in 2013 Class of Fellows of the American Mathematical Society. He was also a Sloan Fellow (1972–1974), Lady Davis Fellow at Hebrew University (1987–1988), Fulbright scholar at Helsinki University (1982–1983), and Alexander von Humboldt Research Fellow (1994–1996).

Moshe Jarden received his PhD in Mathematics from the Hebrew University of Jerusalem in 1970 under the supervision of Hillel Furstenberg. His post-doctoral research was completed during the years 1971–1973 at the Institute of Mathematics, Heidelberg University, where he habilitated in 1972. In 1974, he returned to Israel, and joined the School of Mathematics of Tel Aviv University. He became a full professor in 1982, and the incumbent of the Cissie and Aaron Beare Chair in Algebra and Number Theory in 1998. His research focuses on families of large algebraic extensions of Hilbertian fields. His book Field Arithmetic (1986) earned him the Landau Prize in 1987. For his pioneering work, and especially his long term cooperation with German mathematicians, he was awarded the L. Meithner-A.v.Humboldt Prize by the Alexander von Humboldt Foundation in 2001. He is the author of “Algebraic Patching”, a Springer Monographs in Mathematics book and a joint author with Dan Haran of another book “The Absolute Galois group of a Semi-Local Fields” of the above-mentioned Springer Monographs in Mathematics.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.