Finite Geometry and Combinatorial Applications

· London Mathematical Society Student Texts کتاب 82 · Cambridge University Press
ای-کتاب
299
صفحه‌ها
رده‌بندی‌ها و مرورها به‌تأیید نمی‌رسند.  بیشتر بدانید

درباره این ای-کتاب

The projective and polar geometries that arise from a vector space over a finite field are particularly useful in the construction of combinatorial objects, such as latin squares, designs, codes and graphs. This book provides an introduction to these geometries and their many applications to other areas of combinatorics. Coverage includes a detailed treatment of the forbidden subgraph problem from a geometrical point of view, and a chapter on maximum distance separable codes, which includes a proof that such codes over prime fields are short. The author also provides more than 100 exercises (complete with detailed solutions), which show the diversity of applications of finite fields and their geometries. Finite Geometry and Combinatorial Applications is ideal for anyone, from a third-year undergraduate to a researcher, who wishes to familiarise themselves with and gain an appreciation of finite geometry.

درباره نویسنده

Simeon Ball is a senior lecturer in the Department of Applied Mathematics IV at Universitat Politècnica de Catalunya, Barcelona. He has published over 50 articles and been awarded various prestigious grants, including the Advanced Research Fellowship from EPSRC in the UK and the Ramon y Cajal grant in Spain. In 2012 he proved the MDS conjecture for prime fields, which conjectures that all linear codes over prime fields that meet the Singleton bound are short. This is one of the oldest conjectures in the theory of error-correcting codes.

رده‌بندی این کتاب الکترونیک

نظرات خود را به ما بگویید.

اطلاعات مطالعه

تلفن هوشمند و رایانه لوحی
برنامه «کتاب‌های Google Play» را برای Android و iPad/iPhone بارگیری کنید. به‌طور خودکار با حسابتان همگام‌سازی می‌شود و به شما امکان می‌دهد هر کجا که هستید به‌صورت آنلاین یا آفلاین بخوانید.
رایانه کیفی و رایانه
با استفاده از مرورگر وب رایانه‌تان می‌توانید به کتاب‌های صوتی خریداری‌شده در Google Play گوش دهید.
eReaderها و دستگاه‌های دیگر
برای خواندن در دستگاه‌های جوهر الکترونیکی مانند کتاب‌خوان‌های الکترونیکی Kobo، باید فایل مدنظرتان را بارگیری و به دستگاه منتقل کنید. برای انتقال فایل به کتاب‌خوان‌های الکترونیکی پشتیبانی‌شده، دستورالعمل‌های کامل مرکز راهنمایی را دنبال کنید.