Finite Geometry and Combinatorial Applications

· London Mathematical Society Student Texts 82권 · Cambridge University Press
eBook
299
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The projective and polar geometries that arise from a vector space over a finite field are particularly useful in the construction of combinatorial objects, such as latin squares, designs, codes and graphs. This book provides an introduction to these geometries and their many applications to other areas of combinatorics. Coverage includes a detailed treatment of the forbidden subgraph problem from a geometrical point of view, and a chapter on maximum distance separable codes, which includes a proof that such codes over prime fields are short. The author also provides more than 100 exercises (complete with detailed solutions), which show the diversity of applications of finite fields and their geometries. Finite Geometry and Combinatorial Applications is ideal for anyone, from a third-year undergraduate to a researcher, who wishes to familiarise themselves with and gain an appreciation of finite geometry.

저자 정보

Simeon Ball is a senior lecturer in the Department of Applied Mathematics IV at Universitat Politècnica de Catalunya, Barcelona. He has published over 50 articles and been awarded various prestigious grants, including the Advanced Research Fellowship from EPSRC in the UK and the Ramon y Cajal grant in Spain. In 2012 he proved the MDS conjecture for prime fields, which conjectures that all linear codes over prime fields that meet the Singleton bound are short. This is one of the oldest conjectures in the theory of error-correcting codes.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.