Global Optimization in Engineering Design

· Nonconvex Optimization and Its Applications Кніга 9 · Springer Science & Business Media
Электронная кніга
388
Старонкі
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

Mathematical Programming has been of significant interest and relevance in engineering, an area that is very rich in challenging optimization problems. In particular, many design and operational problems give rise to nonlinear and mixed-integer nonlinear optimization problems whose modeling and solu tion is often nontrivial. Furthermore, with the increased computational power and development of advanced analysis (e. g. , process simulators, finite element packages) and modeling systems (e. g. , GAMS, AMPL, SPEEDUP, ASCEND, gPROMS), the size and complexity of engineering optimization models is rapidly increasing. While the application of efficient local solvers (nonlinear program ming algorithms) has become widespread, a major limitation is that there is often no guarantee that the solutions that are generated correspond to global optima. In some cases finding a local solution might be adequate, but in others it might mean incurring a significant cost penalty, or even worse, getting an incorrect solution to a physical problem. Thus, the need for finding global optima in engineering is a very real one. It is the purpose of this monograph to present recent developments of tech niques and applications of deterministic approaches to global optimization in engineering. The present monograph is heavily represented by chemical engi neers; and to a large extent this is no accident. The reason is that mathematical programming is an active and vibrant area of research in chemical engineering. This trend has existed for about 15 years.

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.