Mathematical Foundations of Network Analysis

· Springer Tracts in Natural Philosophy Libro 16 · Springer Science & Business Media
eBook
196
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

In this book we attempt to develop the fundamental results of resistive network analysis, based upon a sound mathematical structure. The axioms upon which our development is based are Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Law. In order to state these axioms precisely, and use them in the development of our network analysis, an elaborate mathematical structure is introduced, involving concepts of graph theory, linear algebra, and one dimensional algebraic topology. The graph theory and one dimensional algebraic topology used are developed from first principles; the reader needs no background in these subjects. However, we do assume that the reader has some familiarity with elementary linear algebra. It is now stylish to teach elementary linear algebra at the sophomore college level, and we feel that the require ment that the reader should be familiar with elementary linear algebra is no more demanding than the usual requirement in most electrical engineering texts that the reader should be familiar with calculus. In this book, however, no calculus is needed. Although no formal training in circuit theory is needed for an understanding of the book, such experience would certainly help the reader by presenting him with familiar examples relevant to the mathematical abstractions introduced. It is our intention in this book to exhibit the effect of the topological properties of the network upon the branch voltages and branch currents, the objects of interest in network analysis.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.