Minimax Algebra

· Lecture Notes in Economics and Mathematical Systems Livre 166 · Springer Science & Business Media
Ebook
258
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, x®y defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,®),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.