The Virtual Element Method and its Applications

· ·
· SEMA SIMAI Springer Series Book 31 · Springer Nature
Ebook
605
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The purpose of this book is to present the current state of the art of the Virtual Element Method (VEM) by collecting contributions from many of the most active researchers in this field and covering a broad range of topics: from the mathematical foundation to real life computational applications.

The book is naturally divided into three parts. The first part of the book presents recent advances in theoretical and computational aspects of VEMs, discussing the generality of the meshes suitable to the VEM, the implementation of the VEM for linear and nonlinear PDEs, and the construction of discrete hessian complexes. The second part of the volume discusses Virtual Element discretization of paradigmatic linear and non-linear partial differential problems from computational mechanics, fluid dynamics, and wave propagation phenomena. Finally, the third part contains challenging applications such as the modeling of materials with fractures, magneto-hydrodynamics phenomena and contact solid mechanics.

The book is intended for graduate students and researchers in mathematics and engineering fields, interested in learning novel numerical techniques for the solution of partial differential equations. It may as well serve as useful reference material for numerical analysts practitioners of the field.

About the author

Paola F. Antonietti is a full professor in numerical analysis at Politecnico di Milano, Italy. Her research interests concern the development and analysis of numerical methods for partial differential equations with applications to computational geosciences. She is particularly interested in nonstandard high-order finite element methods, including virtual elements and discontinuous Galerkin methods on polygonal and polyhedral grids.

Lourenço Beirão da Veiga is a full professor in numerical analysis at the University of Milano-Bicocca, Italy. His research mainly concerns the development and theoretical analysis of numerical methods for partial differential equations, with a particular focus on solid and fluid mechanics. His more recent interests are on novel and nonstandard methodologies such as isogeometric analysis, mimetic finite differences, and virtual element methods.

Gianmarco Manzini is a research director of the Consiglio Nazionale delle Ricerche in Pavia, Italy and a senior scientist at the Los Alamos National Laboratory in Los Alamos, New Mexico. His research interests mainly concern the design and implementation of numerical methods for partial differential equations, with a special focus on numerical methods for polygonal and polyhedral meshes such as finite volumes, mimetic finite differences, and virtual element methods.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.