Preference Modelling

·
· Lecture Notes in Economics and Mathematical Systems Kirja 250 · Springer Science & Business Media
E-kirja
98
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

The following scheme summarizes the different families introduced in this chapter and the connections between them. Family of interval orders f Row-homogeneous Column-homogeneous Family of family of interval semi orders family of interval orders orders Homogeneous family of i nterva 1 orders Homogeneous family of semi orders Family of weak orders 85 5.13. EXAMPLES We let to the reader the verification of the following assertions. Example 1 is a family of interval orders which is neither row-homogeneous nor column-homogeneous. Example 2 is a column-homogeneous family of interval orders which is not row-homogeneous but where each interval order is a semiorder. Example 3 is an homogeneous family of interval orders which are not semiorders. Example 4 is an homogeneous family of semi orders . . 8 ~ __ --,b ~---i>---_ C a .2 d c Example Example 2 .8 .6 c .5 a 0 a d Example 3 Example 4 5.14. REFERENCES DOIGNON. J.-P •• Generalizations of interval orders. in E. Degreef and J. Van Buggenhaut (eds). T~ndS in MathematiaaZ PsyahoZogy. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1984. FISHBURN. P.C., Intransitive indifference with unequal indifference intervals. J. Math. Psyaho.~ 7 (1970) 144-149. FISHBURN. P.C., Binary choice probabilities: on the varieties of stochastic transitivity. J. Math. Psyaho.~ 10 (1973) 327-352.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.

Jatkoa sarjalle

Lisää kirjoittajalta Marc Roubens

Samanlaisia e-kirjoja