Quantum Groups

· De Gruyter Studies in Mathematical Physics Book 39 · Walter de Gruyter GmbH & Co KG
5.0
1 review
eBook
406
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups.

Contents
Quantum Groups and Quantum Algebras
Highest-Weight Modules over Quantum Algebras
Positive-Energy Representations of Noncompact Quantum Algebras
Duality for Quantum Groups
Invariant q-Difference Operators
Invariant q-Difference Operators Related to GLq(n)
q-Maxwell Equations Hierarchies

Ratings and reviews

5.0
1 review

About the author

Vladimir K. Dobrev, Bulgarian Academy of Sciences, Bulgaria.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.