Semidefinite Optimization and Convex Algebraic Geometry

· ·
· MOS-SIAM Series on Optimization Bog 21 · SIAM
E-bog
495
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This book provides a self-contained, accessible introduction to the mathematical advances and challenges resulting from the use of semidefinite programming in polynomial optimization. This quickly evolving research area with contributions from the diverse fields of convex geometry, algebraic geometry, and optimization is known as convex algebraic geometry. Each chapter addresses a fundamental aspect of convex algebraic geometry. The book begins with an introduction to nonnegative polynomials and sums of squares and their connections to semidefinite programming and quickly advances to several areas at the forefront of current research. These include (1) semidefinite representability of convex sets, (2) duality theory from the point of view of algebraic geometry, and (3) nontraditional topics such as sums of squares of complex forms and noncommutative sums of squares polynomials. Suitable for a class or seminar, with exercises aimed at teaching the topics to beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point of entry into the subject for readers from multiple communities such as engineering, mathematics, and computer science. A guide to the necessary background material is available in the appendix.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.